Temperaturas mínimas seguras de cocción

Temperaturas mínimas seguras de cocción
Use este gráfico y un termómetro para alimentos para asegurarse de que la carne de res, aves, mariscos y otros alimentos cocidos alcancen una temperatura interna mínima que sea segura.

Recuerde: no puede saber si es seguro consumir una carne cocida solo con mirarla. Cualquier carne roja cocida y sin salar —incluida la carne de cerdo— puede verse rosada, incluso luego de alcanzar una temperatura interna segura.

Por qué es importante el tiempo de reposo
Luego de retirar la carne de la parrilla, horno u otra fuente de calor, déjela reposar el tiempo recomendado. Durante el tiempo de reposo, su temperatura permanece constante e incluso continúa elevándose, lo que destruye los gérmenes perjudiciales.

Categoría Alimentos Temperatura (°F) Reposo
* Carne molida y mezclas con carne Res, cerdo, ternera, cordero 160 Ninguno
* Pavo, pollo 165 Ninguno
* Carne fresca de res, ternera, cordero Filetes, asado, chuletas 145 3 min.
* Carne de aves Pollo y pavo, entero 165 Ninguno
* Pechugas de carne de ave, asados 165 Ninguno
* Muslos, patas y alas de carne de ave 165 Ninguno
* Pato y ganso 165 Ninguno
* Relleno (cocido por separado o dentro del ave) 165 Ninguno
* Cerdo y jamón Cerdo fresco 145 3 min.
* Jamón fresco (crudo) 145 3 min.
* Jamón precocido (para recalentar) 140 Ninguno
* Huevos y comidas con huevo Huevos Cocinar hasta que la yema y la clara estén firmes Ninguno
Comidas con huevo 160 Ninguno
* Sobras y guisados Sobras 165 Ninguno
* Guisados 165 Ninguno
* Mariscos Pescados de aleta 145 o cocinar hasta que la carne se vea oscura y se separe fácilmente con un tenedor. Ninguno
* Camarón, langosta y cangrejo Cocinar hasta que la carne se vea perlada y oscura. Ninguno
* Almejas, ostras y mejillones Cocinar hasta que las conchas se abran durante la cocción. Ninguno
* Vieiras Cocinar hasta que la carne se torne color blanco leche o se vea oscura y firme. Ninguno
www.foodsafety.gov

Tipos de Grasas

TIPOS DE GRASAS

Grasas saturadas:
Son aquellas en las que cada átomo de carbón está unido a un átomo de hidrógeno. Dietéticamente se consideran como ” grasas malas”, ya que son las responsables de la aparición del colesterol y de muchos problemas de circulación.
La mayoría de estas grasas se obtienen de alimentos de origen animal ( carne, leche y derivados sin desnatar como los quesos o los yogures) Una manera de saber que se trata de grasas saturadas es darse cuenta de que éstas, si no se calientan, son sólidas. Dentro del mundo vegetal la mayoría de las plantas carecen de este tipo de grasas, si bien tenemos algunas excepciones como el aceite de palma o el aceite de coco. están presentes en carnes rojas y derivados, lácteos enteros y derivados. Su consumo en exceso provoca problemas en el colesterol, obesidad, diabetes, presión alta y corazón.

Grasas insaturadas:
Son aquellas que les faltan átomos de hidrógeno. Son aquellas que se muestran como líquidas a temperatura ambiente. Estas grasas se conocen como ” grasas buenas ” por el papel que ejercen en el control del colesterol y en las enfermedades del corazón. Estas grasas se subdividen a la vez en:

Grasas monoinsaturadas:
Son aquellas que, al carecer de un átomo de hidrógeno, poseen un átomo de carbón de sustitución adicional . el aceite de oliva y el aceite de cacahuete serían dos ejemplos de este tipo de grasas. Estas grasas, cuando se enfrían se hacen más espesas.
Son las más sanas y protegen las arterias. Se encuentran en los cacahuetes, el aceite de oliva, las almendras, las avellanas, el aguacate, las aceitunas y la canola.

Grasas poliinsaturadas:
Son aquellas que , al carecer de dos átomos de hidrógeno, poseen en su lugar dos átomos de carbón adicionales. Tipos de grasas poliinsaturadas son el aceite de pescado, el aceite de semillas de girasol, el aceite de soja, el aceite de avellana, etc. Se mantienen líquidas al enfriarse.

Grasas trans:
Son aquellas grasas insaturadas que, a través de un proceso llamado hidrogenación, se han convertido en grasas con una textura menos fluida. La razón de estos cambios se debe a la necesidad de crear productos que permitan una conservación mejor y que tengan un aspecto más agradable al consumidor. De esta manera nos encontramos con margarinas, pasteles o galletas con grasas vegetales inicialmente insaturadas pero que ahora tienen una textura menos blanda. Sin embargo, este proceso convierte a las grasas insaturadas en ácidos grasos- trans que funcionan como si fuesen grasas saturadas, elevando los niveles de colesterol y causando problemas circulatorios. Entre los principales alimentos que contienen estos aceites tendríamos la margarina y otras grasas duras, los pasteles, las galletas o las patatas fritas.
Ácidos grasos Omega 6: son grasas poliinsaturadas y las encuentras en aceites vegetales como soja, maíz, girasol. Son buenas para elcolesterolmalo y previene accidentes cardiovasculares.
Ácidos grasos Omega 3: son grasas poliinsaturadas, presentes en pescados azules (sardina, salmón, caballa, atún, bonito, anchoas, truchas y pez espada),en ciertos vegetales de hoja verde, en legumbre, en aceites de nuez y canola, en castañas de cajú y semillas de lino.

Orlando’s ozone pollution could violate proposed limits

The amount of lung-damaging ozone inhaled by Orange County residents in recent years would exceed new limits for the pollutant that were proposed recently by the federal government.

A push by the U.S. Environmental Protection Agency for further reductions of ozone pollution has been lauded by health and environmental groups and vilified by industries and conservatives.

The pressing question is whether cleaner cars, mass transit and other, ongoing strategies to reduce ozone will lower levels in Central Florida by the time any new standard takes effect in 2017. Orange, Hillsborough and Sarasota counties have had the state’s worst ozone pollution in recent years, according to EPA.

“Medical research has been there all along that ozone levels need to come down,” said Phil Compton, a Sierra Club regional representative in Tampa. “They aren’t going to get their on their own.”

Invisible and odorless, ozone is a byproduct of fuel fumes, industrial emissions and, most significantly, car exhaust. When those pollutants concentrate near the ground, typically on hot, stagnant days, sunlight “cooks” them into ozone.

At excessive levels, health authorities say, ozone aggravates respiratory diseases, causes premature deaths and can make breathing difficult for children, the elderly and those who spend time outdoors.

This year’s State of the Air report by the American Lung Association gave Hillsborough County the only F in the state for ozone pollution. The report gave D’s to two counties: Orange and Santa Rosa in the Panhandle. Ozone levels during recent years in Seminole, Osceola and Polk counties also hovered around EPA’s proposed limits.

“This is a pretty dangerous pollutant,” said Janice Nolen, association assistant vice president for national policy.

The nation has managed to reduce ozone 33 percent since 1980. The federal standard now is 75 parts per billion — a figure that involves complex averaging. EPA wants to lower the limit to 70 ppb or 65 ppb but also has invited public comment on 60 ppb, which is what the lung association has long pushed for.

Historically, EPA has taken into account cost and technical difficulty of reducing ozone pollution, emphasized incentives over penalties, and has given states years to implement solutions.

Florida is not nearly as troubled with ozone as the Northeast, Texas and Southwest.

Paula Cobb, director of the Florida Department of Environmental Protection air division, said current trends make it likely most of Florida will not have difficulty meeting even the 65 ppb limit.

Gary Huttmann, deputy director of MetroPlan Orlando, said it’s hard to say how often Central Florida might violate the new standard. He said the area probably would be OK at 70 ppb, occasionally top 65 ppb and most likely would repeatedly violate a limit of 60 ppb.

“We’ll just have to wait and see,” said Huttmann, whose agency sets transportation policy in Orange, Seminole and Osceola counties.

If the region regularly fails, he said, it would mean leaders would have to look for ways to get cars off the road, or at least the older, less efficient models. Two likely solutions would be to promote the SunRail commuter train and hope for increased ridership, as well as trying to get people to ride city buses more often.

Other possibilities include reducing automobile idling by timing traffic lights to allow traffic to move more smoothly, as well as discouraging use of gas-powered lawn mowers and leaf blowers, Huttmann said.

Parts of California, including the Los Angeles area, periodically offer rebates on electric lawn mowers when exchanged for working gas mowers. The EPA considers gas mowers a significant source of pollution.

Orange County and the Interstate 4 corridor are among Florida’s ozone hot spots. Metro areas with heavy traffic such as Fort Lauderdale and Miami benefit from sea breezes that dilute ozone concentrations.

Though EPA and the Lung Association contend that research strongly supports the need to reduce ozone pollution, industry and conservatives are attacking EPA as out of step with the economy.

The federal agency, said Florida Chamber of Commerce spokeswoman Edie Ousley, is nothing more than a bureaucracy that is “out of control, tone-deaf and indifferent to the cost and burden some of their rules place on Floridians.”

She promised the chamber “will review the ozone regulations when they are published. However, given their recent track record, we’re not optimistic that the EPA gets it.”

Copyright © 2015, Orlando Sentinel

Florida’s water woes are seen as urgent — except in the House

Gov. Rick Scott, several powerful state senators, a coalition of environmental groups and a consortium of business and industry groups all say the Legislature needs to do something this year about fixing Florida’s water.
The pollution is too pervasive, the flow too endangered, and the perils too great to the state’s future to ignore it any longer, they all agreed.
“Water quality and quantity have the potential to limit residential and business growth, and we need to attack this problem head-on with forward-thinking solutions,” Tom Feeney, president of the probusiness Associated Industries of Florida, said in February.
A rally for clean water drew 200 people to Tallahassee last month, all clamoring for quick action. One speaker, former Department of Community Affairs secretary Tom Pelham, told the crowd, “The time to act is now. Delay will only make the situation worse and the solutions more costly.”
The House is the one place where there’s no such sense of urgency.
“I don’t foresee any major changes to water policy this year,” said Speaker-designate Steve Crisafulli, R-Merritt Island.
The reason, said the man who will be speaker next year, is simple: “It’s going to take more than a year to solve this problem.”
Crisafulli, who hails from a prominent citrus family and is former president of the Brevard County Farm Bureau, pointed out that Florida’s water problem is actually a whole suite of woes involving both water quality and water quantity.
“Nobody has really come up with one silver bullet answer,” he said in an interview a day before the clean water rally.
In Crisafulli’s backyard lies the Indian River Lagoon, which has been battling pollution that likely fueled a series of toxic algae blooms blamed for wiping out 40,000 acres of sea grass. Since then hundreds of manatees, dolphins and pelicans have died, too. Scientists are not sure if the deaths are related to each other or to the pollution and sea grass die-off.
Meanwhile the state’s iconic springs — many of them owned by the taxpayers as part of the state park system — have suffered from increased pollution, toxic algae blooms and a loss of flow that some have blamed on overpumping of the aquifer by agriculture and development interests.
Further south, the Caloosahatchee River on the west coast and the St. Lucie River on the east coast have born the brunt of polluted water released from Lake Okeechobee by federal officials trying to lower the water level before it breaches the berm surrounding the lake.
The emergency releases have fouled the estuaries of both rivers, hurting their sea grass beds and marine life and causing economic consequences for fishing and tourist industries.
Water supply has become a prickly issue. In Apalachicola, the oyster industry that has long tied the town together is failing and Scott is suing Georgia in the U.S. Supreme Court for holding back too much water that normally flows down to Florida.
Niagara Bottling’s Groveland plant overcame strong opposition to get a permit to boost its pumping from the aquifer from 484,000 gallons a day to 910,000 gallons. The Adena Springs Ranch near Silver Springs has faced similar opposition to its request for a permit to pump 5.3 million gallons daily for its proposed cattle operation.
Meanwhile, a coalition of five of Central Florida’s fastest-growing counties have proposed slaking their future thirst by pumping 150 million gallons per day from the St. Johns River. The proposal has proven controversial, with critics pointing out that the St. Johns is already suffering a loss of flow as well as dealing with pollution-fueled algae blooms.
None of these are new problems. They all date back at least a year and, in the case of both the springs and the Lake Okeechobee releases, a decade or more. But finding the political will to deal with them has been difficult. Just last year, for instance, Scott vetoed money for tracking the pollution in Indian River Lagoon.
One thing all of these problems appear to have in common is the type of pollution involved — nitrate pollution, made up of excess nitrogen and phosphorus, from wasted fertilizer, animal waste and leaking septic tanks. Scott’s administration fought hard to wrest away from the U.S. Environmental Protection Agency the power to regulate nitrate pollution, and now must grapple with it in waterways across the state.
Last year thousands of people petitioned Scott for more protection and restoration for the state’s springs. Local government officials in North Florida formed a group to push for springs legislation. However, no springs bill passed.
The Legislature did agree last year to spend $10 million for springs protection, far from the $122 million in projects that the state’s five water management districts had listed as essential to springs restoration.
This year, Scott has proposed the Legislature appropriate $55 million to restore and protect the state’s springs. The Senate is ready to spend even more than that. A coalition of Senate committee chairs has drafted a bill to raise nearly $400 million a year for springs from documentary stamp taxes on real estate transactions, using it for hooking septic tank users up to central sewer lines in the regions around major springs.
There’s also a Senate bill to spend $220 million to protect the Indian River Lagoon and to redirect the damaging water releases from Lake Okeechobee.
Crisafulli doesn’t like the dollar figure on the Senate’s springs bill, calling it “the biggest, most unfortunate part” of any water-related measure. An amount that big “would take away the opportunity to work on other issues around the state.”
He foresees putting aside an as-yet undetermined amount of money this year “to fund as much as we can, and not just focus on one region.” There will be no comprehensive fixes, just individual projects that offer a chance for improvement — for instance, removing 6 million cubic yards of polluted muck from the bottom of the Indian River Lagoon.
Resolving all of Florida’s water problems, he said, “is going to take a commitment continuing out for an indefinite number of years.” That’s how to resolve what’s needed for any new state water policy, he said.
Ironically, according to Estus Whitfield, who served as an aide to governors from Reubin Askew to Jeb Bush, “Florida has had a water policy, the most widely acclaimed in the U.S., for over 40 years.”
So how did things get so messed up? “Thanks to a lack of conviction and implementation by our state government, and with a little help from our friends in the business and ag industries,” Whitfield said, “it has not been effective in preventing the serious demise of our water resources.”
Craig Pittman covers environmental issues for the Times. He can be reached at craig@tampabay.com or follow him on Twitter at @craigtimes.

http://www.tampabay.com/news/perspective/floridas-water-woes-are-seen-as-urgent—-except-in-the-house/2167892
12:24.AM, Thursday, April 23rd, 2015

El Peligroso veneno que contamina las fuentes de Agua Potable en USA

El peligroso veneno que contamina las fuentes de agua potable en EEUU | Pulso USA – Yahoo Noticias – http://es-us.noticias.yahoo.com/blogs/pulso-usa/usted-podr%C3%ADa-estar-bebiendo-agua-con-ars%C3%A9nico-164357464.html
El peligroso veneno que contamina las fuentes de agua potable en EEUU

De Jesús Del Toro | Pulso USA – mié, 2 jul 2014
Para muchas personas en Estados Unidos, cada sorbo de agua puede significar consumir un poco de veneno. La razón es simple, pero perturbadora: numerosas fuentes de agua potable en el país están contaminadas con arsénico, un elemento que si se consume en ciertas cantidades o durante cierto tiempo puede resultar letal.
El problema es de relevancia y para comprenderlo mejor varias organizaciones, entre ellas el Center for Public Integrity, el Center for Investigative Reporting y Michigan Radio, se dieron a la tarea de realizar una investigación a fondo.
Científicos del Departamento de Agricultura hacen una prueba para detectar arsénico en el agua potable. (Flickr/USDA)
Científicos del Departamento de Agricultura hacen una prueba para detectar arsénico en el agua potable. …
Según el estudio mencionado, en general la población consume regularmente cantidades pequeñas de arsénico en el agua, en la comida, en las bebidas. Por lo general son cantidades no dañinas aunque a veces sucede en concentraciones que no matan al individuo en ese momento, como sucedería si se tratara de cantidades mayores, pero sí producen potenciales daños a la salud. Y aunque en 2001 se establecieron regulaciones para tratar de reducir la exposición de la población al arsénico, nuevas revelaciones científicas han señalado que los límites de arsénico en el agua potable definidos por las Agencia de Protección Ambiental (EPA) no serían adecuados. La investigación cita que expertos independientes consideran que el arsénico es en realidad un cancerígeno 17 veces más poderoso que lo que la EPA reconoce.
La norma actual de arsénico en el agua potable de la EPA es 10 partes por billón, e intentos de hacerla aún más estricta –hasta cinco partes por billón- se han topado con la oposición de ciertas empresas, que consideran que cumplirla sería muy costoso. Pero no reducir el arsénico podría tener consecuencias funestas, pues el arsénico ha sido identificado como un factor en la aparición de problemas cardiacos, ataques cerebrales y cáncer. También se ha asociado con retraso en el desarrollo intelectual de los niños.
Un panel de control en una planta de remoción de arsénico del agua. (Flickr/USDA)
Un panel de control en una planta de remoción de arsénico del agua. (Flickr/USDA)
Entonces, si es patente que el arsénico es tan dañino e inquietantemente presente en el agua que consume la población, ¿qué impide establecer controles más estrictos para proteger la salud general?
El reporte del Center for Public Integrity señala a una lucha política y el lobby de poderosas industrias como las responsables de esto, lo que no es poca cosa pues implica riesgos para la vida de miles de personas. Es una guerra de cierta politiquería en contra de la ciencia.
Por ejemplo, la EPA trató recientemente de prohibir un producto pesticida que contiene arsénico, pero retrasos en decisiones legislativas han mantenido a esos productos en el mercado. El uso de ese herbicida en parques, jardines, campos de golf y áreas de juegos, en Naples, Florida, por ejemplo, provocó altos niveles de arsénico en las aguas subterráneas, con casos de personas enfermas. Y muchos casos similares se estarían produciendo de modo cotidiano con el uso de esos pesticidas.
Luego, durante 2012 y 2013 la EPA emprendió un esfuerzo significativo para evaluar la presencia de arsénico y muchas otras sustancias, pero sus esfuerzos han sido frenados por la intervención de un congresista –el republicano Mike Simpson, de Idaho- y de un poderoso lobbyistas de la industria de pesticidas, que trabajó para la EPA durante el gobierno de Bush. Las empresas implicadas, según el reporte del Center for Public Integrity, son Drexel Chemical y Luxembourg-Pamol. El lobbyista se llama Charlie Grizzle. En conjunto pudieron convencer al Congreso de que los estudios de la EPA no incluían todos los estudios sobre arsénico disponibles –aunque el reporte de la EPA fuera consistente y científicamente válido, además de escrito antes de la aparición de los estudios adicionales- y por ello un comité legislativo pospuso todo el asunto. También se reveló que Grizzle hizo contribuciones a la campaña de reelección de Simpson en 2011.
Mientras, la población en muchos lugares de Estados Unidos sigue bebiendo agua con arsénico en niveles peligrosos, y muchos exigen que ya es hora que la política deje de interferir con la ciencia y se den los pasos necesarios para proteger la salud de los estadounidenses.
Así que cada vez que abra el grifo y beba agua piense que no le vendría mal escribirle a su congresista para pedir que la EPA pueda trabajar libremente y regular de modo más estricto la presencia de arsénico.

http://srwqis.tamu.edu/florida/program-information/florida-target-themes/drinking-water-and-human-health/

HomeAbout UsNational Site
Search Publications Regionwide: Submit
Southern Regional Water Program
Research, Extension & Education Water Quality Programs through the Land Grant University System
HomeFloridaProgram InformationFlorida Target ThemesDrinking Water and Human Health
Drinking Water & Human Health in Florida
Groundwater is the source of drinking water for 90% of Florida residents. Public water supply use has increased 134% since 1970. Data from over 1,900 wells in Florida’s ambient monitoring network indicate generally good water quality, but local groundwater contamination problems exist. Agricultural chemicals, including aldicarb, alachlor, bromacil, simazine, and ethylene dibromide (EDB) have caused local and regional (in the case of EDB) problems. Other threats include petroleum products from leaking underground storage tanks, nitrates from dairy and other livestock operations, fertilizers and pesticides in stormwater runoff, and toxic chemicals in leachate from hazardous waste sites. The state requires periodic testing of all community water systems for 118 toxic organic chemicals.
Potential sources of groundwater contamination are numerous in Florida. The state’s unique hydrogeologic features of a thin soil layer, high water table, porous limestone and large quantities of rainfall coupled with rapid population growth, result in a groundwater resource extremely vulnerable to contamination. There are tens of thousands of potential point sources such as surface-water impoundments, drainage wells, underground storage tanks, flowing saline water wells, hazardous wastes sites, power plants, landfills and cattle and dairy feedlots. Similarly there are numerous septic tanks and urban and industrial areas that may discharge water with undesirable quality. Non-point sources that have vast potential for groundwater contamination include coastal saltwater bodies, agricultural and horticultural practices, and mining. Wetlands (10.9 million acres (4.4 Mha)) provide buffers between anthropogenic activities and water quality of lakes, streams, and groundwater. Recognition of the function of wetlands is essential for sustainable development in Florida.
Conditions in Your Watershed
The Environmental Protection Agency provides information on drinking water systems by county. The Florida Department of Environmental Protection (FDEP) Drinking Water Section lists drinking water violations in Florida and the FDEP Source Water Program manages state surface waters.
aquifer1.jpgData on organic quality of water from the state’s principal aquifers are limited; nevertheless, occasional incidences of organic contaminants that may affect human health and welfare are a reality. In the Northwest Florida Water Management District the most prevalent organic contaminants are dry-cleaning solvents and leaking underground gasoline storage tanks. Santa Rosa, Escambia and Holmes counties in the Florida panhandle get their water from the sand and gravel aquifer. This is the sole source for Escambia County. Wells furnishing water for the county populati on are from two to five hundred feet deep. Ten major wells owned by the Escambia County Utility Authority (ECUA) are contaminated. A dry-cleaning solvent (PCE) is the biggest contaminant. Benzene, which indicates petroleum contamination, has also been identified in multiple wells. It is important to point out that rainfall within the boundaries of the county accounts for nearly all the available groundwater. Because of groundwater recharge characteristics, any disposal of waste products or misuse of toxic chemicals on the land surface, whether accidental or intentional, has a high probability for adversely impacting groundwater.
The Biscayne aquifer has been designated by the USEPA as a “sole source” drinking-water supply. The Biscayne aquifer is managed closely to control saltwater intrusion. Water in the aquifer is primarily a calcium bicarbonate type that does not exceed standards for most uses. However, it is subject to contamination by organic solvents used in industry, pesticides and nutrients used in agricultural and urban settings, and leaking fuel storage facilities. Iron concentration in untreated groundwater is commonly larger than the secondary standard of 300 g/L. Iron is commonly associated with the large natural organic content of the region’s groundwater resource. This large natural organic content has contributed to the formation of trihalomethanes during chlorination of public water supplies.
The major inorganic constituent of the surficial aquifers is calcium carbonate. Concentrations of dissolved solids are generally less than 1200 mg/L. In the intermediate aquifers, the inorganic chemical composition is generally mixed calcium magnesium carbonate. Water in these aquifers is hard to very hard. Nitrate, fluoride and iron concentrations generally do not exceed drinking-water standards, but sodium, chloride and dissolved solids commonly do. Saltwater intrusion and upward movement of saline water from deeper aquifers commonly result in unsuitable water quality for most uses.
The major inorganic constituent in the Floridan aquifer is calcium carbonate with concentration of dissolved solids less than 500 mg/L. Although the water tends to be hard, it generally does not exceed drinking-water standards for nitrate, fluoride, sodium and chloride. Iron may exceed the standard in about 10% of water-quality analyses.
In predominantly agricultural regions of Florida, the frequency of drinking water wells contaminated by nitrates exceeds the national frequency (2.4%) found in the EPA survey. Of 3949 drinking water wells analyzed for nitrate by the Florida Department of Agriculture and Consumer Services, (FDACS) and the Florida Department of Environmental Protection, 2483 (63%) contained detectable nitrate and 584 wells (15%) contained nitrate above the EPA MCL (maximum contaminant level). Of the 584 wells statewide that exceeded the MCL, 519 were located in the Central Florida Ridge citrus growing region, encompassed primarily by Lake, Polk and Highland Counties.
Determinants of Change

The following factors impact water quality in Florida:
Population growth (increased waste generation)
Enforcement of total maximum daily loads (TMDLs)
Florida Stormwater Rule
Mandated development and implement minimum flows and levels to maintain riverine base flow to maintain in-stream water quality, fish and wildlife habitats, and estuarine integrity.
Required use of Best Management Practices and precision application of nutrients, pesticides, and irrigation water.
Extension Outreach
The University of Florida Cooperative Extension Service and Florida A&M University College of Engineering Sciences, Technology & Agriculture Cooperative Extension and Outreach Program develop and deliver programs designed to provide educational outreach into all counties of the state. Extension education enables research conducted at colleges, universities and other places throughout the world to be interpreted and delivered to the end user (e.g., families, business owners and agricultural producers). Some of the major Extension education programs addressing drinking water and human health in Florida are:
The objective of FL412 Florida’s Comprehensive Water Quality Program is to provide educational materials, training and programs, where appropriate, in the areas of water quality assessment, protection and improvement for diverse clientele groups in the state of Florida. It aims to increase public awareness of the options for safeguarding drinking water quality through development and use of Best Management Practices to enhance sustainability and protection of drinking water quality.
Youth development programs in FL714 (1962) FL214 (1890) Environmental Education help individuals understand their interdependence with the environment, local ecosystem, energy and other natural resources. Information that addresses all perspectives of critical issues is presented with emphasis on maintaining the quality of human life as well as the quality of the environment. Individuals can then make informed decisions for remediation of environmental issues with a better understanding of the long and short term consequences of their choices.
landscape.jpgGuidelines developed for FL114 Environmental Landscape Management in Florida integrate landscape characteristics of site conditions, landscape design, plant selection and placement, irrigation, fertilization, pest control, mowing, pruning and recycling. Specifically, the Environmental Landscape Management and Florida Yards & Neighborhoods programs teach consumers and other stakeholders how to water efficiently, mulch, recycle yard wastes, manage pests through IPM (Integrated Pest Management), put the right plant in the right spot, fertilize as needed, provide food, water and shelter for wildlife, protect ground water and surface water bodies (i.e., bays, rivers, lakes, ponds, etc.) and minimize stormwater runoff.
The FL269 Water Quality and Environmental Programs in North Florida Design Team teaches small-scale farmers, rural families, public officials, agency representatives, local organizations, community leaders, wholesalers and retailers about practices to enhance the quality of their drinking and domestic water supply. This program is tailored for particular environmental conditions in northern Florida.
The primary impact of FL316 Florida’s Coastal Environment and Water Quality program involves increased efforts to apply sustainable management to Florida’s coastal and estuarine resources. Increased understanding of ecological, economic and management principles and processes among citizens, professionals and agency personnel is promoted. Citizens become more involved in coastal and estuarine monitoring and management and ecological concepts are more frequently key in discussions held by state and federal management agencies.
Scientific Research
Florida Agricultural Experiment Station, Office of the Dean For Research
FAMU-CESTA Research Programs
College and University Education
Youth and continuing adult education are critical to develop new talent and human resources to address the water quality issues of the future. Educational curricula in drinking water and human health are available within several colleges at the University of Florida, College of Agriculture and Life Sciences, College of Design, Construction and Planning and College of Natural Resources and Environment. Key courses include those found in the following areas:
Agricultural and Biological Engineering
Agricultural Operations Management
Agronomy
Civil and Coastal Engineering
Environmental Engineering Sciences
Forest Resources and Natural Resource Conservation
Landscape Architecture
Pest Management – Plant Protection
Soil and Water Science
Courses addressing drinking water and human health at Florida A&M University are located within the College of Engineering Sciences, Technology & Agriculture.
Publications
Extension Digital Information Source (EDIS)
Related Web Sites
University of Florida
Soil and Water Science Department
Department of Agricultural and Biological Engineering
The Florida Water Resources Primer
Wetland Biogeochemistry Laboratory
Florida Farmstead Assessment System (Florida Farm*A*Syst)
Florida Homestead Assessment System (Florida Home*A*Syst)
Keep Your Well Water Clean (for adult poor readers)
Florida Yards & Neighborhoods
Federal and State Agencies
USDA Natural Resources Conservation Service
USGS National Water Quality Program
Florida Department of Environmental Protection
Florida Department of Agriculture and Consumer Services
Florida Department of Health and Human Services
Northwest Florida Water Management District
Suwannee River Water Management District
St. Johns River Water Management District
Southwest Florida Water Management District
South Florida Water Management District
PROGRAM INFORMATION
Program Areas
Florida Target Themes
Contacts in Florida
Partners in Florida
HOT TOPICS IN FLORIDA
TMDLs
On-site Wastewater Treatment
Nutrient Management
Water Quantity
FLORIDA GIS TOOLS
Florida GIS Tools

Home | About Us | Minutes | Reporting | Glossary
National Site | Accessibility Policy | Logos

All About: Water and Health, CNN December 18,2007

By Rachel Oliver
For CNN
Decrease font
Enlarge font

(CNN) — The next time you fall sick and someone suggests it’s because of something in the water, they could be right. According to the World Bank, 88 percent of all diseases are caused by unsafe drinking water, inadequate sanitation and poor hygiene.

Nanhu Lake in Chongqing, China. Around 70 percent of China’s rivers and lakes are polluted.

The number are daunting. Annually, water-related problems are responsible for:

 

  • 4 billion cases of diarrhea, resulting in the deaths of more than 6 million children.

 

 

  • 300 million malaria sufferers;

 

 

  • 200 million schistosomiasis sufferers;

 

 

  • 6 million people who have been struck blind by trachoma;

 

 

  • and 500 million people who are currently at risk of contracting it, the World Bank says.

 

The U.N. also suggests that unsanitary water is to thank for 1.5 million cases of hepatitis A (and 133 million cases of intestinal worms).

At any one point in time, 50 percent of all people in the developing world will be in hospital suffering from one or more water-related diseases. Most will be children, water-related diseases being the second biggest killer of children worldwide (after acute respiratory diseases like Tuberculosis), according to Water Aid. (Diarrhea alone has killed more children in 10 years than all the people killed in wartime since World War 2, according to UNICEF).

Humans have become walking, talking carriers of diseases, thanks to poor sanitation and undrinkable water. Take one gram of human excrement these days, UNICEF says, and you could find around 10 million viruses, 1 million bacteria, 1,000 parasite cysts and 100 parasite eggs.

Today, 1.1 billion humans lack access to freshwater and 2.6 billion are without adequate sanitation. The World Bank says that more people have access to safe drinking water and sanitation today than they did a decade ago. The problem it says is that there are more of us now. That problem isn’t going away.

The situation in the developing world will be particularly difficult moving forward, the U.N.’s fourth Global Environment Outlook (GEO-4) is warning — by 2025, it says, the developing world’s demand for water will have increased by 50 percent (the need of developed countries will have only increased by 18 percent).

Increased demand comes at a time when freshwater stocks are falling in many places. Already in western Asia, reports The Independent, freshwater stocks have fallen from 1,700 cubic meters per person per year in the 1980s to 907 today (and by 2050 it will be just 420 cubic meters).

But access to safe drinking water is not just a poverty issue. It affects everyone. And the reason has to do with how industry disposes of its waste.

According to UNESCO, up to 500 million tons of heavy metals, solvents and toxic sludge slip into the global water supply every year. In the developing world, UNESCO says, as much as 70 percent of industrial waste is just dumped untreated into the rivers and lakes. China is a perfect case in point. According to Greenpeace, around 70 percent of China’s lakes and rivers are now polluted from industrial waste, leaving 300 million people “forced to rely on polluted water supplies.”

Endangered groundwater

An industry that has many fingers pointing at it, however, is the agricultural sector. Currently, the Earth’s readily usable mass of potable water represents around 1 percent of the total amount of water on Earth. The vast majority of that water — at least 70 percent — is used for agricultural purposes. And the “main source of water pollutants in many countries” is agricultural runoff containing nutrients and agrochemicals, the GEO-4 says.

According to the Earth Day Network, 14 million people in the U.S. now regularly drink water contaminated with carcinogenic herbicides. And arsenic levels in drinking water around the globe are now putting more than 140 million people in more than 70 countries at risk of lung disease and cancers.

Arsenic is used in agriculture and is also a byproduct of coal-mining and copper smelting. It is widespread to the degree that “U.S. industries release thousands of pounds of arsenic into the environment every year,” says the Natural Resources Defense Council.

According to the World Health Organization (WHO), the main agriculturally-sourced chemical contaminants in our drinking water are nitrate and pesticides, while biosolids, or sewage sludge can be a source of what is known as “excess nutrients” such as phosphorous. Excess amounts of phosphorous and nitrogen are bad news for water supplies — namely it can cause something called eutrophication.

The U.S. Geological Survey defines eutrophication as a process where excess nutrients “stimulate excessive plant growth, often called an algal bloom [and] reduces dissolved oxygen in the water”.

According to GEO-4, around 40 percent of estuaries in the U.S. are suffering from “severe eutrophication,” which GEO-4 believes is so bad that it could lead to “dead zones” (where the water has effectively been starved of oxygen).

“Dead zones” are on the rise. Greenpeace says that the number of dead zones globally have doubled since 1990 to now fill up 70,000 square kilometers of the Earth’s surface — the size of Ireland.

But it’s not just the rivers and lakes, however, that have become contaminated. Our groundwater supplies also are becoming polluted, according to WorldWatch Institute.

Groundwater represents 97 percent of all freshwater that is readily available to us (surface water such as rivers and lakes accounts for just 0.3 percent) Nearly one-third of all people rely “almost exclusively” on groundwater supplies for their drinking water. In the U.S, 50 percent of the population (including 99 percent of its rural population) relies on groundwater.

As time goes on, the agricultural industry globally will be required to draw on it as the demand for food grows and the available of non-polluted, non-dammed surface water areas dwindle in number.

Unfortunately, polluted groundwater is becoming more common. Already, 50 percent of groundwater samples tested by the U.S. Geological Survey contain pesticides. Arsenic contamination of groundwater has also been discovered in Argentina, Bangladesh, Chile, China, India, Mexico and Thailand, reports Earth Day Network.

According to the WorldWatch Institute, toxic chemicals have contaminated groundwater supplies “on every inhabited continent.”

Struggle for cleanup money

There is one major problem with contaminated groundwater — it takes a very long time to clean itself because water recycles slowly underground. According to WorldWatch Institute, compared to the average 16 days that water can flush out of rivers, in underground aquifers it’s nearer to 1,400 years. And that effectively means that groundwater contamination as far as we are concerned, is permanent.

WorldWatch Institute says that 60 percent of “the most hazardous liquid waste in the United States — 34 billion liters per year of solvents, heavy metals and radioactive materials” is simply pumped underground into the groundwater using what it terms as “injection wells.”

Despite EPA guidelines that ensure the toxic waste goes underneath the source of drinking water, WorldWatch Institute claims that water supplies in Florida, Texas, Ohio and Oklahoma have already become infected.

One of the U.N.’s Millennium Development Goals (MDG), established in 2000 was to “halve the proportion of people without sustainable access to safe drinking water and basic sanitation” by 2015. According to the World Bank, “fewer than one in five countries are on track for meeting this target.”

(Some of the ways to avert water-related deaths are simple. Washing one’s hands with soap, for example, could slash diarrhea cases by nearly 50 percent and “save at least 1 million lives per year,” the World Bank says.)

The reason appears to be solely to do with money — or the lack of it. According to Make Poverty History, in 2005 only $7 billion — less than one-third of what was required — was committed by donor countries to the MDG relating to water and sanitation. And according to Water Aid, aid levels in general for water and sanitation are lower today than they were in 1997.

Earlier this year, special U.N. adviser Jeffrey Sachs placed the blame for the overall lack of MDG funding squarely on the shoulders of the world’s richest countries, specifically the G-8, which he said that “despite endless words about increasing aid to poor countries … are reneging on their part of the bargain.”

According to Sachs, the amount of global aid actually fell by 2 percent between 2005 to 2006, once debt cancellation had been factored in. He called the amount of money needed now “miniscule.”

“We are not talking about unachievable financial goals,” Sachs said. “The G-8, representing nearly 1 billion people, has promised to increase aid to Africa from $25 billion in 2004 to $50 billion in 2010…To put it in perspective, the Christmas bonuses paid this year on Wall Street — just the bonuses — amounted to $24 billion”. E-mail to a friend E-mail to a friend

(Sources: Global Water; WWF; World Bank; UN Global Environment Outlook-4; Make Poverty History; Water Aid; The Sunday Times (Sri Lanka); WorldWatch Institute; UNICEF; UNESCO; Greenpeace; The U.S. Geological Survey; The Independent; Earth Day Network; World Health Organization; Natural Resources Defense Council.)

8 Peligros de las Sodas de Dieta

8 Peligros de la Sodas de Dieta

 

8 Peligros de la Sodas de Dieta

 

¿Por qué la soda de dieta no es saludable? 

1. Neurotóxica

Mientras que los edulcorantes artificiales pueden ser una alternativa a cero calorías de azúcar, son de ninguna manera saludables. Los refrescos dietéticos pueden utilizar una variedad de edulcorantes artificiales en lugar de azúcar, incluyendo aspartame, que actúa como una neurotoxina.

También conocido como NutraSweet, el Aspartame originalmente recibió la aprobación de la FDA para su uso en bebidas carbonatadas en 1983, y todavía sigue siendo el edulcorante más comúnmente usado en refrescos de dieta. Anualmente, las reacciones a consecuencia del aspartame están en la mayoría de los informes sobre reacciones adversas en la Administración de alimentos y medicamentos.

Hecho del L-aspartil-L-fenilalanil-metil-éster, el aspartame es 200 veces más dulce que el azúcar y contiene calorías insignificantes. Una vez en el cuerpo humano, el aspartame se descompone en fenilalanina, ácido aspártico, y metanol. El metanol es un veneno alcohol de madera que, cuando se calienta por encima de 86 grados Fahrenheit (la temperatura del cuerpo humano es 98,6 grados), se convierte en formaldehído. El aspartame es también una excitotoxina que se acumula en el cerebro, y puede excitar a las neuronas del cerebro hasta el punto de la muerte celular.

2. Causa dolores de cabeza y otros síntomas

Otro edulcorante artificial utilizado en refrescos de dieta, la sucralosa, puede causar una serie de problemas de salud como dolores de cabeza.
Hecha de una molécula de azúcar modificada, la sucralosa se supone que pasa a través del cuerpo no absorbida. Debido a que la sucralosa es relativamente nueva en el mercado todavía, sus efectos a largo plazo no han sido medidos. Algunas pruebas sugieren que la sucralosa puede causar migrañas, problemas gastrointestinales y daño en la glándula timo. La sucralosa también puede intensificar los antojos de azúcar, aumentar el apetito y disparar liberación de insulina.

3. Acidifica

La Soda se compone de una serie de productos químicos ácidos. Es una de las sustancias más ácidas que los seres humanos ingieren. Los ácidos de refresco de dieta desmineralizan los huesos y los dientes, y pueden conducir a fracturas y osteoporosis. El ácido en el cuerpo también puede conducir a una serie de condiciones de salud tales como la inflamación y la corrosión de los tejidos del cuerpo. Cuando tu cuerpo es demasiado ácido, la piel no será tan bella o juvenil.

4. Cafeína

Muchos refrescos de dieta contienen cafeína, que es un estimulante artificial y una sustancia adictiva. La cafeína también agrava excesivamente el hígado y puede obstaculizar su capacidad para limpiar y filtrar las toxinas del cuerpo. Además, la cafeína puede desencadenar las hormonas del estrés, lo que puede dar lugar a estrés crónico y aumento de peso. La cafeína también es un diurético, lo que deshidrata el cuerpo. Lo mejor es evitar la cafeína en todas sus formas, en particular los refrescos de dieta.

5. Aumenta el riesgo de obesidad

Los estudios muestran que aunque la soda de dieta no tiene valor calórico, puede tener un impacto en la insulina similar a la ingestión de azúcar. Esto es más probable debido a la fase cefálica a la que la insulina responde en el cerebro. Al probar el dulce refresco de dieta, el cuerpo lo percibe como azúcar y hace que el páncreas libere insulina tal como lo haría si estuviera consumiendo azúcar real.

Algunos estudios demuestran que beber refrescos dieta puede aumentar la incidencia de la obesidad y / o evitar que pierdas peso. De hecho, los investigadores de la Universidad de Texas Health Center, han hecho algunos descubrimientos sorprendentes cuando se prueba la relación entre la obesidad y la soda de dieta.

El Riesgo de obesidad aumentó de la siguiente manera:

26.5 por ciento para las personas bebiendo hasta ½ lata de refresco de dieta por día, y
24 por ciento para los bebedores de soda regular que consumen hasta una lata por día
54.5 por ciento para una o dos latas de refresco de dieta por día en comparación con el
32,8 por ciento de los que tomaron la misma cantidad de soda regular
57,1 por ciento para las personas que beben más de dos latas de refresco de dieta por día en comparación con 47,2 por ciento de las personas bebiendo la misma cantidad de soda regular

En otras palabras, el consumo de refrescos de dieta tenían una mayor correlación con los índices de obesidad que el consumo de refrescos de calorías que contienen azúcar o alta fructosa de jarabe de maíz.

6. Aumenta la carga tóxica

No hay mucho que sea natural en la soda de dieta. Éstos son sólo algunos de los ingredientes que puedes encontrar:

El agua carbonatada
Colorante artificial
Ácido fosfórico
Benzoato de potasio
El ácido cítrico

No suena tan delicioso y saludable, verdad! Suena repugnante, y eso es porque es realmente un producto desagradable. La soda de dieta coloca una carga tóxica considerable en el hígado y puede contribuir a lodos tóxicos en sus intestinos. Estás mucho mejor bebiendo agua pura y filtrada, no agua corriente.

7. Aumenta el Riesgo de Enfermedad Cardíaca

Un estudio de la Universidad de Miami Miller School of Medicine, mostraron que las personas que bebían refrescos de dieta al día, tenían un riesgo 61 por ciento mayor de un evento cardiovascular. El estudio siguió a más de 2.500 participantes por nueve años, durante los cuales a 559 les ocurrieron eventos vasculares. Incluso teniendo en cuenta la edad y otros factores de riesgo, el riesgo con el consumo de refrescos de dieta parecía ser al menos un 48 por ciento más alto. Con ese tipo de riesgo, ¿por qué correr el riesgo con refresco de dieta?

8. Pueden contribuir al síndrome metabólico

Un estudio de la Escuela de Salud Pública de la Universidad de Minnesota en 2008, relacionaron al refresco de dieta con el síndrome metabólico, un conjunto de trastornos metabólicos como la obesidad, la presión arterial alta, niveles elevados de triglicéridos y resistencia a la hormona. De acuerdo con el estudio, el consumo de refrescos de dieta aumenta el riesgo de desarrollar el síndrome metabólico en un 34 por ciento, que fue mayor que el aumento del riesgo de consumir otros dos tipos no saludables de alimentos – carne (26 por ciento mayor riesgo), y las frituras (25 por ciento más de riesgo).

Con todos estos riesgos para la salud, tienes que preguntarte, ¿el refresco de dieta es la pena? Evitar el refresco puede ser una de las mejores cosas que puedes hacer para su salud y belleza.

Fuente:  healthfreedoms.org
Investigación y Traducción original y completa al español: equipo de Vida Lúcida.

Peligros para la salud con el consumo de agua Potable o Embotellada

Peligros para la salud con el consumo de agua potable o embotellada.

 

Descubre lo que contiene el agua que bebes y descubre una alternativa de consumo eficaz y saludable.

 

Los pesticidas del agua del grifo pueden tener parte de culpa en el aumento de las alergias a los alimentos, según un nuevo estudio publicado en la revista ‘Annals of Allergy, Asthma & Immunology. Los investigadores han detectado que los altos niveles de diclorofenoles, un químico usado en pesticidas y para clorar el agua, cuando se encuentran en el cuerpo humano, están asociados con alergias alimentarias y ambientales.

Pero estos no son los únicos químicos presentes en el agua que bebemos, que no obstante, cumple con los parámetros que las autoridades sanitarias consideran como aptos para el consumo. Cloramina, restos de medicamentos, isótopos radioactivos, flúor, cloro, nitritos, nitratos, herbicidas, pesticidas, plomo, compuestos organoclorados… La increíble cantidad de sustancias tóxicas que podemos encontrar en el agua está exponiendo nuestros cuerpos a un continuo ataque químico.

¿Continua sensación de cansancio, problemas para dormir, malas digestiones, estrés, dificultad para concentrarse…? Hemos llegado a un punto en que todo esto nos parece normal. Normal sí… pero ¿es acaso natural?

La cantidad de toxinas con la que tiene que lidiar el organismo día tras día es muy superior a lo que era hace unas generaciones y nuestros cuerpos no tienen mecanismos suficientes para deshacerse de ellas. En las últimas décadas estamos presenciando un aumento preocupante de enfermedades ya conocidas y la aparición de otras nuevas: aumento de cáncer, enfermedades autoinmunes, sensibilidad química, alergias, problemas de la piel, enfermedades del sistema digestivo (enfermedad de Crohn…)

El agua embotellada no es la mejor alternativa.

 

Aunque pudiera parecer que optar por agua embotellada en lugar de agua del grifo podría ser la mejor alternativa, Según el Consejo para la Defensa de los Recursos Naturales de EEUU (Natural Resources Defense Council) el 40% del agua embotellada allí es en realidad agua del grifo. Así mismo, los estudios e investigaciones del NRDC han demostrado que el agua embotellada no siempre está libre de metales pesados, flúor y otros contaminantes.En España, investigadores de la Universidad Rey Juan Carlos (URJC) han hallado trazas de nicotina en cinco marcas de agua mineral embotellada.

Por no mencionar el plástico de las botellas no recicladas, que es altamente nocivo para el ecosistema y la salud del planeta. Más de 100 millones de toneladas de plástico contaminan nuestros océanos…y el Bisfenol A presente en muchos de esos plásticos, nocivo para nuestro organismo

Filtrar el agua, la medida más eficaz y beneficiosa.

Existe consenso con respecto a lo beneficioso que resulta para el ser humano el beber de dos a cuatro litros de agua por día. No solo porque hidrata, sino también porque entrega otros beneficios como el mejoramiento de la piel y el pelo, ayuda a evitar la retención de líquido, además de colaborar con la digestión y la eliminación de toxinas.

¿Pero qué hacer para beber un agua de calidad sin dañar el medio ambiente? Acostumbrarnos a filtrar el agua potable de nuestras casas. Para ello tenemos gran variedad de modelos de filtros en el mercado. ¿Qué hacen estos filtros? Incrementan la calidad del agua potable al eliminar el mal sabor que puede ocasionar el cloro que ésta contiene, además de los residuos y sales que pudiera presentar el agua.

Fuente: europapress.es

UN LITRO DE ACEITE CONTAMINA CERCA DE UN MILLON DE LITROS DE AGUA!!!

Cantidad suficiente para el consumo de agua de una persona durante 14 años.
Si tu eliges, reenviar esto para tus amigos, el
medio ambiente quedara muy agradecido.
Al final, es bueno para todos.
¡¡¡ PUES TODOS CONSUMIMOS AGUA !!!
Si todos compartimos esta información con
nuestros amigos, vecinos y familiares, les aseguro que habremos iniciado una cadena que podría llegar a más de 10,000 personas, está en nosotros cuidar DIEZ MIL Millones de litros de agua.
GRACIAS POR SER PARTE DE ESTE IMPORTANTE CAMBIO
Dra. María R. I. Elías Costa
Laboratorio Bioquímico-Clínico
UNIDOS POR UNA VIDA SALUDABLE Y PLENA…